General mitigation techniques for coherent beam instabilities in particle accelerators

Author:

Métral EliasORCID

Abstract

AbstractAn important number of coherent beam instability mechanisms can be observed in a particle accelerator, depending if the latter is linear or circular, operated at low, medium or high energy, with a small or a huge amount of turns (for circular machines), close to transition energy or not (below or above), with only one bunch or many bunches, with counter-rotating beams (such as in colliders) or not, if the beam is positively or negatively charged, if one is interested in the longitudinal plane or in the transverse plane, in the presence of linear coupling between the transverse planes or not, in the presence of nonlinearities or not, in the presence of noise or not, etc. Building a realistic impedance model of a machine is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics (linear and nonlinear), RF gymnastics, transverse damper, noise, space charge, electron cloud, and beam–beam (in a collider). Better characterising an instability is the first step before trying to find appropriate mitigation measures and push the performance of a particle accelerator, as some mitigation methods are beneficial for some effects and detrimental for some others. For this, an excellent instrumentation is of paramount importance to be able to diagnose if the instability is longitudinal or transverse, single bunch, or coupled bunch, involving only one mode of oscillation or several, and the evolution of the intrabunch motion with intensity is a fundamental observable with high-intensity high-brightness beams. Finally, among the possible mitigation methods of coherent beam instabilities, the ones perturbing the least the single-particle motion (leading to the largest necessary dynamic aperture and beam lifetime) and easiest to implement for day-to-day operation in the machine control room should be preferred.

Funder

CERN

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3