The Hong–Ou–Mandel experiment: from photon indistinguishability to continuous-variable quantum computing

Author:

Fabre N.,Amanti M.,Baboux F.,Keller A.,Ducci S.,Milman P.

Abstract

Abstract We extensively discuss the Hong–Ou–Mandel experiment by taking an original phase-space-based perspective. For this, we analyze time and frequency variables as quantum continuous variables in perfect analogy with position and momentum of massive particles or with the electromagnetic field’s quadratures. We discuss how this experiment can be used to directly measure the time-frequency Wigner function and implement logical gates in these variables. We also briefly discuss the quantum/classical aspects of this experiment providing a general expression for intensity correlations that make explicit the differences between a classical Hong–Ou–Mandel-like dip and a quantum one. Throughout the manuscript, we will often focus and refer to a particular system based on AlGaAs waveguides emitting photon pairs via spontaneous parametric down conversion, but our results can be extended to other analogous experimental systems and to various degrees of freedom. Graphical Abstract The Hong–Ou–Mandel experiment is a landmark in quantum optics, showing the bunching of indistinguishable bunch. In the present contribution, we give another perspective to this experiment based on a phase space representation of the continuous degrees of freedom of the single photons sent into the input arms of such interferometer. We show that the coincidence detection in the output ports of an Hong– Ou–Mandel interferometer is a direct measurement of the Wigner function of the produced photons in a given region of space, and we discuss how continuous degrees of freedom of single photons can be used in continuous variables quantum protocols, as quantum error correction and metrology. Our results open the perspective of broadening even more the applications of single photon-based quantum information-related protocols.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3