The GALORE project

Author:

Romagnoni MarcoORCID,Bandiera Laura,Carraro Chiara,De Salvador Davide,Guidi Vincenzo,Mazzolari Andrea,Scatizza Luigi,Sgarbossa Francesco,Soldani Mattia,Sytov Alexei,Tamisari Melissa

Abstract

Abstract Bent crystals are a compact and versatile tool to manipulate ultra-relativistic particle beams in accelerators. Indeed, the unrivaled steering power achievable exploiting channeling of particles between the atomic planes is comparable to that of a $$10^{2-3}$$ 10 2 - 3 Tesla magnetic dipole. Since the first experiments in the 1980s, extensive research has been delivering important results for new physics experiments and applications in accelerators. The substantial technological development, accompanied by reliable Monte Carlo simulations, has increased the steering efficiency from a few % to the intrinsic maximum efficiency of $$\sim 80\%$$ 80 % , limited by scattering of the particles with nuclei inside the crystal. The recently started two-year (2022–2023) project GALORE of INFN aims to assess experimentally the possibility to overcome this hard limit by developing a new generation of bent crystals, featuring an innovative geometry characterized by a crystalline microstructure which influences particle dynamic in the crystal lattice to boost efficiency close to 100%. The manufacturing process will exploit well-established techniques developed for silicon microelectronics, and experimental testing will be carried out at the extracted beamlines of CERN North Area with high-energy hadron beams. The success of this project could strongly impact the employment of bent crystal in frontier energy accelerators, boosting performance of already proposed schemes as well as enabling completely inedited use of bent crystal in particle physics experiment in accelerators. Graphic Abstract

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topical issue “Dynamics of systems on the nanoscale (2021)”;The European Physical Journal D;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3