Modelling the impact of argon atoms on a tungsten surface

Author:

Shermukhamedov Shokirbek,Probst MichaelORCID

Abstract

AbstractSputtering from plasma-facing surfaces upon particle impact is an important process in material science. It is especially relevant in the diverter region of fusion devices, which nearly always consist of tungsten. Besides the main plasma components, argon is used in fusion devices to improve energy confinement. As a consequence, hot Ar atoms interact with W surfaces and can cause sputtering and other material degrading events. Atomistic simulations of the plasma-wall interactions make it possible to carry out a detailed analysis of sputtering, reflection, and retention processes. We report the results of molecular dynamics simulations with neural network potential energy expressions modelling the bombardment of tungsten samples by argon atoms in the energy range from 100 to 800 eV. The obtained sputtering results are in good agreement with available literature data. Furthermore, our data provide additional insight into atomic details of the processes involved in sputtering. We also investigate the effect of surface temperature on sputtering and reflection probabilities, which significantly affects the irradiation process at higher impact energies. Graphical abstract

Funder

H2020 Marie Skłodowska-Curie Actions

Euratom Research and Training Programme

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3