Polarity dependence of CO2 conversion in nanosecond pulsed large gap dielectric barrier discharges

Author:

Mousazadeh Borghei Sepideh,Brüser VolkerORCID,Kolb Juergen F.

Abstract

AbstractThe splitting of carbon dioxide was investigated for a coaxial dielectric barrier discharge, which was operated with nanosecond high-voltage pulses of 500 ns and amplitudes up to 20 kV at ambient temperature and atmospheric pressure. A non-thermal plasma could be established across a gap distance of 4 mm and a length of 90 mm for gas flows of 30–210 sccm of pure CO2 and with admixtures of Argon. The application of high-voltage pulses of either positive or negative polarity resulted in distinct differences in effective conversion and CO production. The highest observed conversion of 6.6%, corresponding to a CO production of 7%, was achieved for positive high-voltage pulses of 20 kV that were applied with a repetition rate of 3 kHz for a ratio of CO2:Ar of 1:2 at a flow rate of 30 sccm. Conversely, an operation with negative high-voltage pulses, for otherwise the same operating parameters, resulted in an effective conversion of only 5.3% and CO production of 5.4%. The corresponding conversion rates for specific energy input (SEI), concerning different operating parameters, could be related to reaction enthalpies that were calculated from thermodynamic functions. The differences in polarity were associated with discharge characteristics, i.e., plasmas appeared more filamentary for positive high-voltage pulses. In this case, a visible plasma could also be established for much lower pulse amplitudes. Graphical Abstract

Funder

Leibniz-Institut für Plasmaforschung und Technologie e.V. (INP)

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3