Time-dependent variational dynamics for nonadiabatically coupled nuclear and electronic quantum wavepackets in molecules

Author:

Takatsuka KazuoORCID

Abstract

AbstractWe propose a methodology to unify electronic and nuclear quantum wavepacket dynamics in molecular processes including nonadiabatic chemical reactions. The canonical and traditional approach in the full quantum treatment both for electrons and nuclei rests on the Born–Oppenheimer fixed nuclei strategy, the total wavefunction of which is described in terms of the Born–Huang expansion. This approach is already realized numerically but only for small molecules with several number of coupled electronic states for extremely hard technical reasons. Besides, the stationary-state view of the relevant electronic states based on the Born–Oppenheimer approximation is not always realistic in tracking real-time electron dynamics in attosecond scale. We therefore incorporate nuclear wavepacket dynamics into the scheme of nonadiabatic electron wavepacket theory, which we have been studying for a long time. In this scheme thus far, electron wavepackets are quantum mechanically propagated in time along nuclear paths that can naturally bifurcate due to nonadiabatic interactions. The nuclear paths are in turn generated simultaneously by the so-called matrix force given by the electronic states involved, the off-diagonal elements of which represent the force arising from nonadiabatic interactions. Here we advance so that the nuclear wavepackets are directly taken into account in place of path (trajectory) approximation. The nuclear wavefunctions are represented in terms of the Cartesian Gaussians multiplied by plane waves, which allows for feasible calculations of atomic and molecular integrals together with the electronic counterparts in a unified manner. The Schrödinger dynamics of the simultaneous electronic and nuclear wavepackets are to be integrated by means of the dual least action principle of quantum mechanics [K. Takatsuka, J. Phys. Commun. 4, 035007 (2020)], which is a time-dependent variational principle. Great contributions of Vincent McKoy in the electron dynamics in the fixed nuclei approximation and development in time-resolved photoelectron spectroscopy are briefly outlined as a guide to the present work.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3