Confinement of $$\hbox {CO}_{2}$$ inside carbon nanotubes

Author:

Faginas-Lago NoeliaORCID,Apriliyanto Yusuf BramastyaORCID,Lombardi AndreaORCID

Abstract

Abstract We propose a preliminary study based on molecular dynamics calculations to investigate the adsorption of pure $$\hbox {CO}_{2}$$ CO 2 on flexible single-walled carbon nanotubes (SWCNTs) of different sizes. The adsorption capacities of SWCNTs were simulated and the effect of chirality and diameter of SWCNTs was assessed, to check them as sizable carbon structured materials suitable for $$\hbox {CO}_{2}$$ CO 2 confinement and storage. The potential energy surfaces, describing the intermolecular interactions involving $$\hbox {CO}_{2}$$ CO 2 -SWCNT and $$\hbox {CO}_{2}$$ CO 2 -$$\hbox {CO}_2$$ CO 2 pairs, have been described specifically by adopting the improved lennard jones model potential. The intramolecular interactions within the SWCNT were considered explicitly since they are responsible for out-of-plane movements of carbon atoms and the flexibility of nanotubes. These well-formulated potentials are well capable of defining $$\hbox {CO}_{2}$$ CO 2 confinement through physisorption and guarantee a quantitative description and realistic results for the dynamics of the interactions. The flexible SWCNTs can adsorb up to 35 wt% at 273 K, a property that makes them potentially versatile materials competitive with other carbon-derived adsorbents to cope with $$\hbox {CO}_{2}$$ CO 2 gas emission. Graphic abstract

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3