Hadronic vacuum-polarization contribution to various QED observables

Author:

Karshenboim Savely G.,Shelyuto Valery A.

Abstract

Abstract Due to precision tests of quantum electrodynamics (QED), determination of accurate values of fundamental constants, and constraints on new physics, it is important in a consistent way to evaluate a number of QED observables such as the Lamb shift in hydrogen-like atomic systems. Even in a pure leptonic case, those QED variables are in fact not pure QED ones since hadronic effects are involved through intermediate states while accounting for higher-order effects. One of them is hadronic vacuum polarization (hVP). Complex evaluations often involve a number of QED quantities, for which treatment of hVP is not consistent. The highest accuracy for a calculation of the hVP term is required for the anomalous magnetic moment of a muon. However, a standard data-driven treatment of hVP, based on a dispersion integration of experimental data on electron-positron annihilation to hadrons and some other phenomena, leads to a contradiction with the experimental value of $$a_\mu $$ a μ . This experimental value can be considered as an indirect determination of the hVP contribution to $$a_\mu $$ a μ and the scatter of theory and experiment allows one to obtain a conservative estimation of the related hVP contribution. In this paper, we derive exact and approximate relations between the leading-order (LO) hVP contributions to various observables. Using those relations, we obtain for them a consistent set of the results, based on the scatter of $$a_\mu $$ a μ values. While calculating the LO hVP term, we have to remember that next-to-LO (NLO) hVP corrections are often comparable with the uncertainty of the LO term. Special attention is payed to hVP contribution to simple atoms. In particular, we discuss the NLO contribution to the Lamb shift in ordinary and muonic hydrogen and other two-body atoms for $$Z\le 10$$ Z 10 . We also consider the NLO contribution of the muonic vacuum polarization to the Lamb shift in hydrogen-like atoms. With the $$a_\mu $$ a μ puzzle unresolved, one may still require present-days values of the hVP contributions to various observable for comparison to experiment etc. the presence of contradicting values and a lack of consistency means an additional uncertainty for $$a_\mu $$ a μ and for key contributions to it, including the LO hVP one. We present here an estimation of such a propagated uncertainty in hVP contributions to different QED observables and recommend a consistent set of the related LO hVP contributions. Graphic Abstract

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3