Author:
Apostolova Tzveta,Obreshkov Boyan
Abstract
Abstract
We investigate the high harmonic generation in bulk silicon irradiated by intense near-infrared laser pulses with pulse duration $$\le $$
≤
100 fs. For peak field strength of the applied laser is below 1 V/Å, the spectral intensity of the emitted harmonics follows the prediction of perturbative nonlinear optics—the frequency comb consists of a series of discrete peaks at odd harmonic orders. For a pulse duration longer than 30 fs and peak laser field strength exceeding 1 V/Å, non-perturbative effects and generation of even order harmonics occur. The appearance of even harmonics is due to optical rectification of the transmitted pulse, which includes weak quasi-DC component with electric field as low as 3 V/$$\upmu $$
μ
m. In the strong coupling regime, when the peak field strength inside vacuum exceeds 1.5 V/Å, the laser creates dense breakdown plasma of electron–hole pairs, which in turn results in severe spectral broadening of the transmitted pulse. The harmonic spectrum superimposes onto a continuous background, the spectral width of individual harmonics is substantially broadened, and their central wavelength undergoes a blue shift that covers the spacing between adjacent harmonic orders.
Graphic abstract
Funder
Bulgarian National Science Fund
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献