Experimentally validated modeling of the optical energy deposition in highly ionized ambient air by strong femtosecond laser pulses

Author:

Kaleris KonstantinosORCID,Tazes Ioannis,Orphanos Yannis,Petrakis Stelios,Bakarezos Makis,Mourjopoulos John,Dimitriou Vasilis,Tatarakis Michael,Papadogiannis Nektarios A.

Abstract

Abstract The deposition of femtosecond laser optical energy in gases leads to the emission of secondary electromagnetic and acoustic radiation. These optoacoustic components have a complex nonlinear dependency on the laser beam characteristics, such as the pulse energy, duration, wavelength and the focusing conditions, as well as on the optical and elastic characteristics of the gaseous medium. The initial interaction times are governed by the high electronic excitation and ionization. These phenomena result in a self-modulation of the laser pulse, significantly affecting the optical energy deposition on the medium. Such complex nonlinear phenomena are very difficult to be studied via analytical equations. To address this, a multiphysics Particle-In-Cell model is applied for the evaluation of the optical energy deposition and plasma generation from tightly focused femtosecond pulses in ambient air. The computational domain of the model is built to describe optical energy deposition in its full spatiotemporal scale. The model is validated by experimental results of the absorbed energy. The agreement between the computational and experimental results provides the basis for the future development of an advanced microstructural Finite Element Method model, which, combined with the Particle-In-Cell model, will have the ability of delivering detailed insights for all the sub-domains and timescales varying from nano- to femto-seconds of the laser-induced breakdown phenomenon. Graphic Abstract

Funder

European Cooperation in Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3