Abstract
AbstractArtificial Intelligence (AI) technologies have exposed more and more ethical issues while providing services to people. It is challenging for people to realize the occurrence of AI ethical issues in most cases. The lower the public awareness, the more difficult it is to address AI ethical issues. Many previous studies have explored public reactions and opinions on AI ethical issues through questionnaires and social media platforms like Twitter. However, these approaches primarily focus on categorizing popular topics and sentiments, overlooking the public’s potential lack of knowledge underlying these issues. Few studies revealed the holistic knowledge structure of AI ethical topics and the relations among the subtopics. As the world’s largest online encyclopedia, Wikipedia encourages people to jointly contribute and share their knowledge by adding new topics and following a well-accepted hierarchical structure. Through public viewing and editing, Wikipedia serves as a proxy for knowledge transmission. This study aims to analyze how the public comprehend the body of knowledge of AI ethics. We adopted the community detection approach to identify the hierarchical community of the AI ethical topics, and further extracted the AI ethics-related entities, which are proper nouns, organizations, and persons. The findings reveal that the primary topics at the top-level community, most pertinent to AI ethics, predominantly revolve around knowledge-based and ethical issues. Examples include transitions from Information Theory to Internet Copyright Infringement. In summary, this study contributes to three points, (1) to present the holistic knowledge structure of AI ethics, (2) to evaluate and improve the existing body of knowledge of AI ethics, (3) to enhance public perception of AI ethics to mitigate the risks associated with AI technologies.
Funder
Swiss Federal Institute of Technology Zurich
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Araujo T, Helberger N, Kruikemeier S, de Vreese CH (2020) In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc 35:611–623. https://doi.org/10.1007/s00146-019-00931-w
2. Bohlin L, Edler D, Lancichinetti A, Rosvall M (2014) Community detection and visualization of networks with the map equation framework. In: Ding Y, Rousseau R, Wolfram D (eds) Measuring scholarly impact. Springer, Cham, pp 3–34
3. Buscaldi D, Rosso P (2006) Mining knowledge from Wikipedia for the question answering task
4. Cucerzan S (2007) Large-scale named entity disambiguation based on Wikipedia data
5. Das S, Lavoie A, Magdon-Ismail M (2011) Pushing your point of view: behavioral measures of manipulation in Wikipedia