Cycling into the workshop: e-bike and m-bike mobility patterns for predictive maintenance in Barcelona’s bike-sharing system

Author:

Grau-Escolano JordiORCID,Bassolas AleixORCID,Vicens JulianORCID

Abstract

AbstractBike-sharing systems have emerged as a significant element of urban mobility, providing an environmentally friendly transportation alternative. With the increasing integration of electric bikes alongside mechanical bikes, it is crucial to illuminate distinct usage patterns and their impact on maintenance. Accordingly, this research aims to develop a comprehensive understanding of mobility dynamics, distinguishing between different mobility modes, and introducing a novel predictive maintenance system tailored for bikes. By utilising a combination of trip information and maintenance data from Barcelona’s bike-sharing system, Bicing, this study conducts an extensive analysis of mobility patterns and their relationship to failures of bike components. To accurately predict maintenance needs for essential bike parts, this research delves into various mobility metrics and applies statistical and machine learning survival models, including deep learning models. Due to their complexity, and with the objective of bolstering confidence in the system’s predictions, interpretability techniques explain the main predictors of maintenance needs. The analysis reveals marked differences in the usage patterns of mechanical bikes and electric bikes, with a growing user preference for the latter despite their extra costs. These differences in mobility were found to have a considerable impact on the maintenance needs within the bike-sharing system. Moreover, the predictive maintenance models proved effective in forecasting these maintenance needs, capable of operating across an entire bike fleet. Despite challenges such as approximated bike usage metrics and data imbalances, the study successfully showcases the feasibility of an accurate predictive maintenance system capable of improving operational costs, bike availability, and security.

Funder

Eurecat, Centre Tecnològic de Catalunya's 'Vicente Lopez' PhD grant

Generalitat de Catalunya's CATALONIA.AI programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3