Abstract
AbstractEngineering projects are notoriously hard to complete on-time, with project delays often theorised to propagate across interdependent activities. Here, we use a novel dataset consisting of activity networks from 14 diverse, large-scale engineering projects to uncover network properties that impact timely project completion. We provide empirical evidence of perturbation cascades, where perturbations in the delivery of a single activity can impact the delivery of up to 4 activities downstream, leading to large perturbation cascades. We further show that perturbation clustering significantly affects project overall delays. Finally, we find that poorly performing projects have their highest perturbations in high reach nodes, which can lead to largest cascades, while well performing projects have perturbations in low reach nodes, resulting in localised cascades. Altogether, these findings pave the way for a network-science framework that can materially enhance the delivery of large-scale engineering projects.
Funder
Fondation Bettencourt Schueller
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Science Applications,Modelling and Simulation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献