Characterizing partisan political narrative frameworks about COVID-19 on Twitter

Author:

Jing Elise,Ahn Yong-YeolORCID

Abstract

AbstractThe COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide between the Democratic and Republican party’s narratives about the pandemic which resulted in polarization of individual behaviors and divergent policy adoption across regions. As shown in this case, as well as in most major social issues, strongly polarized narrative frameworks facilitate such narratives. To understand polarization and other social chasms, it is critical to dissect these diverging narratives. Here, taking the Democratic and Republican political social media posts about the pandemic as a case study, we demonstrate that a combination of computational methods can provide useful insights into the different contexts, framing, and characters and relationships that construct their narrative frameworks which individual posts source from. Leveraging a dataset of tweets from the politicians in the U.S., including the ex-president, members of Congress, and state governors, we found that the Democrats’ narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. We then perform an automatic framing analysis to characterize the ways in which they frame their narratives, where we found that the Democrats emphasize the government’s role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Finally, we present a semantic role analysis that uncovers the important characters and relationships in their narratives as well as how they facilitate a membership categorization process. Our findings concretely expose the gaps in the “elusive consensus” between the two parties. Our methodologies may be applied to computationally study narratives in various domains.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,Modeling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3