Abstract
AbstractTo complement traditional dietary surveys, which are costly and of limited scale, researchers have resorted to digital data to infer the impact of eating habits on people’s health. However, online studies are limited in resolution: they are carried out at country or regional level and do not capture precisely the composition of the food consumed. We study the association between food consumption (derived from the loyalty cards of the main grocery retailer in London) and health outcomes (derived from publicly-available medical prescription records of all general practitioners in the city). The scale and granularity of our analysis is unprecedented: we analyze 1.6B food item purchases and 1.1B medical prescriptions for the entire city of London over the course of one year. By studying food consumption down to the level of nutrients, we show that nutrient diversity and amount of calories are the two strongest predictors of the prevalence of three diseases related to what is called the “metabolic syndrome”: hypertension, high cholesterol, and diabetes. This syndrome is a cluster of symptoms generally associated with obesity, is common across the rich world, and affects one in four adults in the UK. Our linear regression models achieve an $R^{2}$
R
2
of 0.6 when estimating the prevalence of diabetes in nearly 1000 census areas in London, and a classifier can identify (un)healthy areas with up to 91% accuracy. Interestingly, healthy areas are not necessarily well-off (income matters less than what one would expect) and have distinctive features: they tend to systematically eat less carbohydrates and sugar, diversify nutrients, and avoid large quantities. More generally, our study shows that analytics of digital records of grocery purchases can be used as a cheap and scalable tool for health surveillance and, upon these records, different stakeholders from governments to insurance companies to food companies could implement effective prevention strategies.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Science Applications,Modeling and Simulation
Reference63 articles.
1. Ekelund U, Ward HA, Norat T, Luan J, May AM, Weiderpass E, Sharp SJ, Overvad K, Østergaard JN, Tjønneland A et al. (2015) Physical activity and all-cause mortality across levels of overall and abdominal adiposity in European men and women: the European prospective investigation into cancer and nutrition study (epic). Am J Clin Nutr 101(3):613–621
2. Flegal K, Kruszon-Moran D, Carroll M, Fryar C, Ogden C (2016) Trends in obesity among adults in the United States, 2005 to 2014. 315:2284
3. van Vliet-Ostaptchouk JV, Nuotio M-L, Slagter SN, Doiron D, Fischer K, Foco L, Gaye A, Gögele M, Heier M, Hiekkalinna T et al. (2014) The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord 14(1):9
4. Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiology research and practice 2014
5. Trattner C, Elsweiler D (2017) Investigating the healthiness of Internet-sourced recipes: implications for meal planning and recommender systems. In: Proceedings of the 26th international conference on World Wide Web. WWW. ACM, Geneva, pp 489–498
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献