Large-scale and high-resolution analysis of food purchases and health outcomes

Author:

Aiello Luca MariaORCID,Schifanella Rossano,Quercia Daniele,Del Prete Lucia

Abstract

AbstractTo complement traditional dietary surveys, which are costly and of limited scale, researchers have resorted to digital data to infer the impact of eating habits on people’s health. However, online studies are limited in resolution: they are carried out at country or regional level and do not capture precisely the composition of the food consumed. We study the association between food consumption (derived from the loyalty cards of the main grocery retailer in London) and health outcomes (derived from publicly-available medical prescription records of all general practitioners in the city). The scale and granularity of our analysis is unprecedented: we analyze 1.6B food item purchases and 1.1B medical prescriptions for the entire city of London over the course of one year. By studying food consumption down to the level of nutrients, we show that nutrient diversity and amount of calories are the two strongest predictors of the prevalence of three diseases related to what is called the “metabolic syndrome”: hypertension, high cholesterol, and diabetes. This syndrome is a cluster of symptoms generally associated with obesity, is common across the rich world, and affects one in four adults in the UK. Our linear regression models achieve an $R^{2}$ R 2 of 0.6 when estimating the prevalence of diabetes in nearly 1000 census areas in London, and a classifier can identify (un)healthy areas with up to 91% accuracy. Interestingly, healthy areas are not necessarily well-off (income matters less than what one would expect) and have distinctive features: they tend to systematically eat less carbohydrates and sugar, diversify nutrients, and avoid large quantities. More generally, our study shows that analytics of digital records of grocery purchases can be used as a cheap and scalable tool for health surveillance and, upon these records, different stakeholders from governments to insurance companies to food companies could implement effective prevention strategies.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3