Novelty and influence of creative works, and quantifying patterns of advances based on probabilistic references networks

Author:

Park Doheum,Nam Juhan,Park JuyongORCID

Abstract

AbstractRecent advances in the quantitative, computational methodology for the modeling and analysis of heterogeneous large-scale data are leading to new opportunities for understanding human behaviors and faculties, including creativity that drives creative enterprises such as science. While innovation is crucial for novel and influential achievements, quantifying these qualities in creative works remains a challenge. Here we present an information-theoretic framework for computing the novelty and influence of creative works based on their generation probabilities reflecting the degree of uniqueness of their elements in comparison with other works. Applying the formalism to a high-quality, large-scale data set of classical piano compositions–works of significant scientific and intellectual value–spanning several centuries of musical history, represented as symbolic progressions of chords, we find that the enterprise’s developmental history can be characterised as a dynamic process composed of the emergence of dominant, paradigmatic creative styles that define distinct historical periods. These findings can offer a new understanding of the evolution of creative enterprises based on principled measures of novelty and influence.

Funder

National Research Foundation of Korea

BK21 Plus Postgraduate Organization for Content Science

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,Modelling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creative influence prediction using graph theory;Intelligenza Artificiale;2024-07-31

2. Evolutionary Analysis and Cultural Transmission Models of Color Style Distributions in Painting Arts;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

3. Collaborative Creativity in TikTok Music Duets;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

4. Novelty and cultural evolution in modern popular music;EPJ Data Science;2023-02-10

5. Designing deep-network based novelty assessment model in Design education;Applied Soft Computing;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3