Human biases in body measurement estimation

Author:

Martynov Kirill,Garimella Kiran,West RobertORCID

Abstract

AbstractBody measurements, including weight and height, are key indicators of health. Being able to visually assess body measurements reliably is a step towards increased awareness of overweight and obesity and is thus important for public health. Nevertheless it is currently not well understood how accurately humans can assess weight and height from images, and when and how they fail. To bridge this gap, we start from 1,682 images of persons collected from the Web, each annotated with the true weight and height, and ask crowd workers to estimate the weight and height for each image. We conduct a faceted analysis taking into account characteristics of the images as well as the crowd workers assessing the images, revealing several novel findings: (1) Even after aggregation, the crowd’s accuracy is overall low. (2) We find strong evidence of contraction bias toward a reference value, such that the weight of light people and the height of short people are overestimated, whereas the weight of heavy people and the height of tall people are underestimated. (3) We estimate workers’ individual reference values using a Bayesian model, finding that reference values strongly correlate with workers’ own height and weight, indicating that workers are better at estimating people similar to themselves. (4) The weight of tall people is underestimated more than that of short people; yet, knowing the height decreases the weight error only mildly. (5) Accuracy is higher on images of females than of males, but female and male workers are no different in terms of accuracy. (6) Crowd workers improve over time if given feedback on previous guesses. Finally, we explore various bias correction models for improving the crowd’s accuracy, but find that this only leads to modest gains. Overall, this work provides important insights on biases in body measurement estimation as obesity-related conditions are on the rise.

Funder

Swiss Data Science Center

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bodies and biases;Media Asia;2022-04-29

2. Effect of Gender, Pose and Camera Distance on Human Body Dimensions Estimation;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3