Author:
Verma Anshul,Angelini Orazio,Di Matteo Tiziana
Abstract
AbstractComposite development indicators used in policy making often subjectively aggregate a restricted set of indicators. We show, using dimensionality reduction techniques, including Principal Component Analysis (PCA) and for the first time information filtering and hierarchical clustering, that these composite indicators miss key information on the relationship between different indicators. In particular, the grouping of indicators via topics is not reflected in the data at a global and local level. We overcome these issues by using the clustering of indicators to build a new set of cluster driven composite development indicators that are objective, data driven, comparable between countries, and retain interpretabilty. We discuss their consequences on informing policy makers about country development, comparing them with the top PageRank indicators as a benchmark. Finally, we demonstrate that our new set of composite development indicators outperforms the benchmark on a dataset reconstruction task.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Science Applications,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献