UTDRM: unsupervised method for training debunked-narrative retrieval models

Author:

Singh IknoorORCID,Scarton Carolina,Bontcheva Kalina

Abstract

AbstractA key task in the fact-checking workflow is to establish whether the claim under investigation has already been debunked or fact-checked before. This is essentially a retrieval task where a misinformation claim is used as a query to retrieve from a corpus of debunks. Prior debunk retrieval methods have typically been trained on annotated pairs of misinformation claims and debunks. The novelty of this paper is an Unsupervised Method for Training Debunked-Narrative Retrieval Models () in a zero-shot setting, eliminating the need for human-annotated pairs. This approach leverages fact-checking articles for the generation of synthetic claims and employs a neural retrieval model for training. Our experiments show that tends to match or exceed the performance of state-of-the-art methods on seven datasets, which demonstrates its effectiveness and broad applicability. The paper also analyses the impact of various factors on ’s performance, such as the quantity of fact-checking articles utilised, the number of synthetically generated claims employed, the proposed entity inoculation method, and the usage of large language models for retrieval.

Funder

UK Research and Innovation

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,Modeling and Simulation

Reference59 articles.

1. Procter R, Catania MA, He Y, Liakata M, Zubiaga A, Kochkina E, Zhao R (2023) Some observations on fact-checking work with implications for computational support. arXiv preprint. arXiv:2305.02224

2. Shaar S, Nikolov A, Babulkov N, Alam F, Barrón-Cedeno A, Elsayed T, Hasanain M, Suwaileh R, Haouari F, Da San Martino G et al. (2020) Overview of CheckThat! 2020 English: automatic identification and verification of claims in social media. In: CLEF (working notes)

3. Nakov P, Da San Martino G, Alam F, Shaar S, Mubarak H, Babulkov N (2022) Overview of the CLEF-2022 CheckThat! lab task 2 on detecting previously fact-checked claims

4. Nakov P, Corney D, Hasanain M, Alam F, Elsayed T, Barrón-Cedeño A, Papotti P, Shaar S, Martino GDS (2021) Automated fact-checking for assisting human fact-checkers. ArXiv preprint. arXiv:2103.07769

5. Kazemi A, Garimella K, Gaffney D, Hale S (2021) Claim matching beyond English to scale global fact-checking. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, Online, pp 4504–4517. https://doi.org/10.18653/v1/2021.acl-long.347. https://aclanthology.org/2021.acl-long.347

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3