Affiliation:
1. Bunin Yelets State University
2. Yelets State Ivan Bunin University
Abstract
A promising way to increase the bandwidth and noise immunity of modern wireless information transmission systems is the use of antenna arrays equipped with a digital signal processing unit, which include MIMO systems (Multiple Input Multiple Output), as well as adaptive (smart) antennas. The main advantage of this approach is the antenna’s spacing, which makes it possible to assess the angular coordinates of radio signals with further developing
a radiation pattern. Gaps in studying the influence of the lattice geometry together with various kinds of antenna elements are known to be one of the factors of inaccuracy of such systems. The work is aimed at obtaining the shape
of a planar antenna array with a higher direction finding accuracy. There is described an algorithm for calculating such an arrangement of antenna elements of flat antenna arrays, in which the standard deviation of the estimates of the angular coordinates of one and two radio signal sources is reduced. The proposed approach is based on the analysis
of the influence of antenna location on the variance of estimates described by the lower boundary of Kramer-Rao. This value shows the influence of the location of antenna elements on the accuracy of estimating the direction of arrival of a joint assessment with two signal sources. It has been shown that the accuracy of the direction-of-arrival non-joint estimation is determined as the sum of squared differences between all coordinates of omnidirectional elements along the X- and Y-axis if one signal arrives. If two signals arrive, the accuracy of the direction-of-arrival joint estimation depends on the sum of cosines having the argument with the difference between sensor coordinates and signals radius-vectors. The optimal location of the antenna elements using the obtained expressions can be calculated very easily to reduce the direction-finding errors near particular sectors. In order to confirm the proposed method, there were studied the antenna arrays built after minimizing the boundary of Kramer-Rao, where the target functions are the new expressions. It is found out that the new shapes of antenna arrays based on the analytical expressions have better direction-of-arrival accuracy in comparison with the circular ones.
Publisher
Astrakhan State Technical University
Reference18 articles.
1. Elkamchouchi H., Mohamed D., MohamedO., Ali W. Multiuser Detection Using Blind Robust Beamforming in Multipath Environment for LTE System // International Journal on Communications Antenna and Propagation (IRECAP). 2016. N. 6 (5). P. 291–298. DOI: 10.15866/irecap.v6i5.10006., Elkamchouchi H., Mohamed D., MohamedO., Ali W. Multiuser Detection Using Blind Robust Beamforming in Multipath Environment for LTE System // International Journal on Communications Antenna and Propagation (IRECAP). 2016. N. 6 (5). P. 291–298. DOI: 10.15866/irecap.v6i5.10006.
2. Samarah K. Localization of Mobile Stations from ONE Base Station in GSM Systems // International Review on Computers and Software (IRECOS). 2016. N. 11 (5). P. 427–435. DOI: 10.15866/irecos.v11i5.9367., Samarah K. Localization of Mobile Stations from ONE Base Station in GSM Systems // International Review on Computers and Software (IRECOS). 2016. N. 11 (5). P. 427–435. DOI: 10.15866/irecos.v11i5.9367.
3. Hosseini S. M., Sadeghzadeh R. A., Virdee B. S. DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios // EURASIP Journal on Wireless Communications and Networking. 2017. Article number: 58. DOI: 10.1186/s13638-017-0838-y., Hosseini S. M., Sadeghzadeh R. A., Virdee B. S. DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios // EURASIP Journal on Wireless Communications and Networking. 2017. Article number: 58. DOI: 10.1186/s13638-017-0838-y.
4. Chetan R. D., Jadhav A. N. Simulation study on DOA estimation using MUSIC algorithm // Intl. J. Tech. Eng. Sys. 2011. V. 2. N. 1. P. 54–57., Chetan R. D., Jadhav A. N. Simulation study on DOA estimation using MUSIC algorithm // Intl. J. Tech. Eng. Sys. 2011. V. 2. N. 1. P. 54–57.
5. Ikeda K., Nagai J., Fujita T., Yamada H., Hirata A., Ohira T. DOA estimation by using MUSIC algorithm with a 9-elements rectangular ESPAR antenna // Proc. of Intl. Symp. on Antennas and Propagat. Aug. 2004. P. 45–48., Ikeda K., Nagai J., Fujita T., Yamada H., Hirata A., Ohira T. DOA estimation by using MUSIC algorithm with a 9-elements rectangular ESPAR antenna // Proc. of Intl. Symp. on Antennas and Propagat. Aug. 2004. P. 45–48.