POLYNOMIAL METHOD FOR THE SYNTHESIS OF MULTICHANNEL SYSTEMS BY TRANSITION TO MATRIX POLYNOMIAL REPRESENTATION

Author:

Bobobekov Kurbonmurod Mullomirakovich1

Affiliation:

1. Novosibirsk State Technical University

Abstract

Polynomial methods for synthesizing linear regulators for automatic control systems with linear objects, proposed by a number of authors, including Chen, Kailath, Gaiduk, and others, along with methods of synthesis in the state space, are becoming increasingly widespread. The synthesis of multichannel regulators caused by the need to use the matrix polynomial calculus is of a special difficulty, which is aggravated by a significant increase in the dimension of the matrices during the transition from polynomial matrices to numeric ones, in which Sylvester matrices are used. Herewith, it is necessary to take into account the requirements of controllability and observability, leading to the need to check for the presence of identical roots in polynomial matrices corresponding to the numerator and denominator of the object. This leads to the requirement of a relatively prime matrix polynomial fraction, which can be significantly weakened if it is possible to include in the desired characteristic matrix of the system some zeros and poles of the object located far to the left of the imaginary axis. In calculations using numerical matrices and, consequently, using Sylvester matrices, the latter degenerate due to the lowering of the rank, which complicates the calculations. The research continues to study polynomial synthesis of multichannel regulators based on the results obtained by Chen and other researchers and presents an algorithm for the synthesis of regulators, the feature of which is the possibility of introducing additional so-called free parameters that allow additional requirements for the automatic control system. The free parameters allow to obtain strictly proper regulators, along with the proper regulators.

Publisher

Astrakhan State Technical University

Reference22 articles.

1. Александров А. Г. Синтез регуляторов многомерных систем. М.: Машиностроение, 1986. 263 с., Aleksandrov A. G. Sintez regulyatorov mnogomernyh sistem. M.: Mashinostroenie, 1986. 263 s.

2. Chen C. T. Linear System Theory and Design. Third Edition. New York; Oxford, 1999. 334 p., Chen C. T. Linear System Theory and Design. Third Edition. New York; Oxford, 1999. 334 p.

3. Chen C. T. Linear System Theory and Design. New York: Holt, Rinehart and Winston, 1984. 636 p., Chen C. T. Linear System Theory and Design. New York: Holt, Rinehart and Winston, 1984. 636 p.

4. Kailath T. Linear Systems. New Jersey: Prentice Hall, 1980. 350 p., Kailath T. Linear Systems. New Jersey: Prentice Hall, 1980. 350 p.

5. Dorf R. C. Modern control systems. Harlow: PIARSON, 2011. 1111 p., Dorf R. C. Modern control systems. Harlow: PIARSON, 2011. 1111 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3