IMPROVING ALGORITHMS OF VIDEO SEQUENCE DATA RECOGNITION FOR IDENTIFICATION OF TRANSITION PROCESSES IN A FLOATATION MACHINE OF POTASSIUM ORE

Author:

Malysheva Anna Vladimirovna1,Zatonskiy Andrey Vladimirovich2

Affiliation:

1. Perm National Research Polytechnic University

2. Berezniki branch of Perm National Research Polytechnic University

Abstract

Potash fertilizers are important for the Russian national agriculture and have become an export item. This fact results in increasing potash fertilizer production and improving potassium procession management. The object of research is floatation processes of potassium in the example of “Uralkaliy”, PJSC (Berezniki, Perm region). The aim of the research is improving algorithms of bubble recognizing in the video stream and using them to identify transient processes and situations in a flotation machine. Methods of researches include the system analysis, mathematical modeling, regression analysis, elements of automatic control theory and object identification. Algorithms for recognizing foam in the sylvinic floatation machine have been modified, which significantly increased the speed of recognizing bubbles in images of the low-quality video stream. Experiments were carried out on laboratory and industrial flotation machines, the results showing the possibility of using modified algorithms both in laboratory and industrial conditions. Video sequences of such quality were obtained and processed on the industrial floatation machine and could be used on the industrial flotation machine to identify situations and to control the machine operation. Using modified algorithms in experimental data processing allowed to identify the transient process and to clarify the time of the transient process. It has been shown that the obtained values are comparable with the data of other researchers and are not at variance with the experimental data. The error of bubble recognition has been estimated. The ways of using the data obtained for the decision support systems of the floater or of the automated control systems of the floatation machine have been shown.

Publisher

Astrakhan State Technical University

Reference24 articles.

1. Григалашвили А. С. Реализация модели заполнения и разгрузки усреднительного склада руды // Современная наука: актуальные проблемы теории и практики. Сер.: Естественные и технические науки. 2016. № 1. С. 44-48., Grigalashvili A. S. Realizaciya modeli zapolneniya i razgruzki usrednitel'nogo sklada rudy // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Ser.: Estestvennye i tehnicheskie nauki. 2016. № 1. S. 44-48.

2. Тетерина Н. Н., Сабиров Р. Х., Сквирский Л. Я., Кириченко Л. Н. Технология флотационного обогащения калийных руд. Пермь: Перм. гос. техн. ун-т, 2002. 484 с., Teterina N. N., Sabirov R. H., Skvirskiy L. Ya., Kirichenko L. N. Tehnologiya flotacionnogo obogascheniya kaliynyh rud. Perm': Perm. gos. tehn. un-t, 2002. 484 s.

3. Курмаев Р. Х. Флотационный способ получения хлорида калия из сильвинита. Пермь: Перм. гос. техн. ун-т, 1993. 83 с., Kurmaev R. H. Flotacionnyy sposob polucheniya hlorida kaliya iz sil'vinita. Perm': Perm. gos. tehn. un-t, 1993. 83 s.

4. Затонский А. В., Варламова С. А., Малышева А. В., Мясников А. А. Использование видеографической информации для уточнения динамической стохастической модели процесса флотации калийной руды // Науковедение. 2017. № 2 (39). С. 87., Zatonskiy A. V., Varlamova S. A., Malysheva A. V., Myasnikov A. A. Ispol'zovanie videograficheskoy informacii dlya utochneniya dinamicheskoy stohasticheskoy modeli processa flotacii kaliynoy rudy // Naukovedenie. 2017. № 2 (39). S. 87.

5. Zatonskiy А. V., Varlamova S. A. Use of reflection flare spots for automatic recognition of froth parameters in potassium ores flotation // Obogashchenie Rud (Mineral processing). 2016. № 2. P. 49-56. DOI: 10.17580/or.2016.02.09., Zatonskiy A. V., Varlamova S. A. Use of reflection flare spots for automatic recognition of froth parameters in potassium ores flotation // Obogashchenie Rud (Mineral processing). 2016. № 2. P. 49-56. DOI: 10.17580/or.2016.02.09.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3