Non-manipulated mechanism of decision-making on terms of contracts with university faculty

Author:

Mkrtychev Sergey Vazgenovmch1,Shipilova Anna Mikhaylovna1,Klimov Vitaly Sergeevich1

Affiliation:

1. Togliatti State University

Abstract

One of the key tasks of managing contracts with university faculty (UF) is to determine the optimal term of contract. In this regard, it is of scientific and practical interest to develop an effective mechanism of decision-making on the terms of the contracts with the UF. The competition for the positions of UF is held by the collegiate body for managing the personnel policy of the university called personnel commission (PC). The decision on the terms of the contract is made, according to the key performance indicators (KPIs) of UF activities for a certain time period. PC members have opportunity, in case the teacher fails to meet all the required KPIs, to recommend a longer contract term for a teacher, guided by other (alternative) KPIs. Since this approach is applied selectively and often without a reasoned justification for the position of PC members, the UF perceives it as a manifestation of manipulation on the part of the PC when deciding on the term of the contract. To solve this problem, it is proposed to use a non-manipulative mechanism of decision-making on the terms of contracts with the UF. To implement the proposed mechanism, a machine learning tool is used, which generates a forecast for the implementation of an alternative KPI by the teacher. The source of data for forecasting is the teacher's passive digital footprint, which makes it possible to ensure the completeness and veracity of information about his/her scientific and pedagogical activities. Based on the forecast obtained, the PC makes a reasonable and transparent decision on the term of the contract with the teacher. Using the proposed mechanism will reduce the negative im-pact of the effect of manipulation on the decision-making process of the PC on the terms of contracts with the UF of the university and hence to ensure an increase their efficiency.

Publisher

Astrakhan State Technical University

Subject

General Medicine

Reference15 articles.

1. Курбатова М. В., Донова И. В. Эффективный контракт в высшем образовании: результаты реализации проекта // JIS. 2019. № 2. С. 122–145., Kurbatova M. V., Donova I. V. Effektivnyy kontrakt v vysshem obrazovanii: rezul'taty realizacii proekta // JIS. 2019. № 2. S. 122–145.

2. Рыжов В. П., Терешков В. В, Каширина Н. А., Марьев А. А. Об оценке эффективности работы преподавателей в свете введения эффективного контракта // Высшее образование в России. 2015. № 10. С. 16–26., Ryzhov V. P., Tereshkov V. V, Kashirina N. A., Mar'ev A. A. Ob ocenke effektivnosti raboty prepodavateley v svete vvedeniya effektivnogo kontrakta // Vysshee obrazovanie v Rossii. 2015. № 10. S. 16–26.

3. Минобрнауки выступило против краткосрочных трудовых договоров с преподавателями вузов. URL: https://tass.ru/obschestvo/7537507 (дата обращения: 15.02.2023)., Minobrnauki vystupilo protiv kratkosrochnyh trudovyh dogovorov s prepodavatelyami vuzov. URL: https://tass.ru/obschestvo/7537507 (data obrascheniya: 15.02.2023).

4. Конституционный суд установил срок трудового договора преподавателей вуза. URL: https://skillbox.ru/media/education/konstitutsionnyy-sud-ustanovil-srok-trudovogo-dogovora-prepodavateley-vuza/ (дата обращения: 15.02.2023)., Konstitucionnyy sud ustanovil srok trudovogo dogovora prepodavateley vuza. URL: https://skillbox.ru/media/education/konstitutsionnyy-sud-ustanovil-srok-trudovogo-dogovora-prepodavateley-vuza/ (data obrascheniya: 15.02.2023).

5. Порядок организации и проведения конкурса на замещение должностей профессорско-преподавательского состава. Тольятти: Изд-во ТГУ, 2020. URL: https://www.tltsu.ru/upravlenie/upravlenie-po-rabote-s-personalom/ (дата обращения: 15.02.2023)., Poryadok organizacii i provedeniya konkursa na zameschenie dolzhnostey professorsko-prepodavatel'skogo sostava. Tol'yatti: Izd-vo TGU, 2020. URL: https://www.tltsu.ru/upravlenie/upravlenie-po-rabote-s-personalom/ (data obrascheniya: 15.02.2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3