BUILDING UP SCHEDULES IN MULTIPROJECT DESIGN MANAGEMENT SYSTEMS

Author:

Dobrynin Alexey Sergeyevich1,Kulakov Stanislav Matveevich2,Koynov Alexander Sergeyevich1

Affiliation:

1. Siberia State Industrial University

2. Siberian State Industrial University

Abstract

The article focuses on the problem of algorithmizing the process of building schedules in various spheres of human activity by using the modern mathematical apparatus, as well as achievements in the field of systems analysis, game theory, and graph theory. Nowadays, there have been analyzed and determined the boundaries of the effective application of many well-known heuristic and metaheuristic algorithms, which have shown good results in practice. However, despite the achievements in the discrete optimization, scheduling and network planning, the new problems of drawing up so-called coordinated schedules in the field of multi-project planning, which take into account the preferences (requests, wishes) of specific schedule executors, are still of practical interest. There have been considered the approaches and main stages of solving the problems of constructing coordinated schedules in multi-project planning, which is relevant for the development of new generation software and tools

Publisher

Astrakhan State Technical University

Reference13 articles.

1. Голенко Д. И. Статистические методы сетевого планирования и управления. М.: Наука, 1968. 400 с., Golenko D. I. Statisticheskie metody setevogo planirovaniya i upravleniya. M.: Nauka, 1968. 400 s.

2. Адельсон-Вельский Г. М. О некоторых вопросах сетевого планирования // Исследования по дискретной математике. М.: Наука, 1973. С. 105–134., Adel'son-Vel'skiy G. M. O nekotoryh voprosah setevogo planirovaniya // Issledovaniya po diskretnoy matematike. M.: Nauka, 1973. S. 105–134.

3. Bellman R., Gross O. Some combinatorial problems arising in the theory of multistage processes // Journal of the Society for Industrial and Applied Mathematics. 1945. V. 2. N. 3. P. 124–136., Bellman R., Gross O. Some combinatorial problems arising in the theory of multistage processes // Journal of the Society for Industrial and Applied Mathematics. 1945. V. 2. N. 3. P. 124–136.

4. Bellman R. Mathematical Aspects of Scheduling Theory // Journal of the Society for Industrial and Applied Mathematics. 1956. V. 4. N. 3. P. 168–205., Bellman R. Mathematical Aspects of Scheduling Theory // Journal of the Society for Industrial and Applied Mathematics. 1956. V. 4. N. 3. P. 168–205.

5. Джексон Д. Р. Очереди с динамическим правилом приоритета // Календарное планирование. М.: Прогресс, 1966. С. 357–377., Dzhekson D. R. Ocheredi s dinamicheskim pravilom prioriteta // Kalendarnoe planirovanie. M.: Progress, 1966. S. 357–377.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3