Analysis and forecasting of modern telecommunication systems traffic based on artificial intelligence methods

Author:

Kutuzov Denis Valer'evich1,Osovsky Alexsey Viktorovich1,Starov Dmitriy Vladimirovich1,Maltseva Natalia Sergeevna2,Perova Kseniya Vladimirovna2

Affiliation:

1. Astrakhan State Technical University

2. Astrakhan State Technical University

Abstract

In recent years, artificial intelligence technologies have demonstrated significant success in solving the problem of traffic analysis and forecasting in various telecommunication systems. Forecasting allows the telecom operator to know about the future behavior of the network, take timely necessary measures to improve the quality of customer service, and decide on the need to install or upgrade equipment. Using data collected from IoT mobile devices as an example, this article provides an overview and analysis of various time series forecasting models describing the traffic behavior of telecommunication systems. Forecasting models such as the exponential smoothing method, linear regression, the autoregressive integrated moving average (ARIMA) method, the support vector machine regression method, the N-BEATS method, which uses fully connected layers of a neural network for forecasting a one-dimensional time series, are discussed; the features of some of them are briefly outlined. For a specific data array, data preparation operations are described: removing unused columns, replacing missing data on transaction durations with their median values, and describing the main statistical characteristics of the data array. A preliminary data analysis is presented, which consists of using smoothing methods: moving average and exponential smoothing. The process of training models and a comparative analysis of the quality of their training are described. For this data set, it was concluded that for the UDP protocol the ARIMA model has the best learning quality, for the TCP protocol - linear regression and the Theta model, for the HTTPS protocol – linear regression, ARIMA and N-BEATS.

Publisher

Astrakhan State Technical University

Reference27 articles.

1. Пищин О. Н., Воронина К. П., Мальцева Н. С. Модернизация авиационной системы радиосвязи с целью повышения помехозащищенности радиоканала // Вестн. Астрахан. гос. техн. ун-та. Сер.: Управление, вычислительная техника и информатика. 2023. № 1. С. 83–90. DOI: 10.24143/2073-5529-2023-1-83-90., Pishchin O. N., Voronina K. P., Mal'tseva N. S. Modernizatsiia aviatsionnoi sistemy radiosviazi s tsel'iu povysheniia pomekhozashchishchennosti radiokanala [Modernization of the aviation radio communication system in order to increase the noise immunity of the radio channel]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Upravlenie, vychislitel'naia tekhnika i informatika, 2023, no. 1, pp. 83-90. DOI: 10.24143/2073-5529-2023-1-83-90.

2. Rizvi S. Unveiling the Potential of Artificial Intelli-gence and Machine Learning in the 5G Network Landscape: A Comprehensive Review // AJRCoS. 2023. V. 16, no. 4. P. 23–31. DOI: 10.9734/ajrcos/2023/v16i4367., Rizvi S. Unveiling the Potential of Artificial Intelli-gence and Machine Learning in the 5G Network Landscape: A Comprehensive Review. AJRCoS, 2023, vol. 16, no. 4, pp. 23-31. DOI: 10.9734/ajrcos/2023/v16i4367.

3. Ahmadzai F. H., Lee W. A mobile traffic load prediction based on recurrent neural network: A case of telecommunication in Afghanistan // Electronics Letters. 2022. V. 58, no. 14. P. 563–565. DOI: 10.1049/ell2.12534., Ahmadzai F. H., Lee W. A mobile traffic load prediction based on recurrent neural network: A case of telecommunication in Afghanistan. Electronics Letters, 2022, vol. 58, no. 14, pp. 563-565. DOI: 10.1049/ell2.12534.

4. Zhou B., He D., Sun Z., Ng W. H. Network traffic modeling and prediction with ARIMA/GARCH // Proc. HET- NETs’ 06 Conference (Ilkley, UK, 11-13 September 2006). P. 1–10., Zhou B., He D., Sun Z., Ng W. H. Network traffic modeling and prediction with ARIMA/GARCH. Proc. HET- NETs’ 06 Conference (Ilkley, UK, 11-13 September 2006). Pp. 1-10.

5. Сарре О., Moulines E., Pesquet J.-C., Petropulu A. P., Xueshi Y. Long-range dependence and heavy-tail modeling for teletraffic data // IEEE Signal Process. Mag. 2002. V. 19, no. 3. P. 14–27., Sarre O., Moulines E., Pesquet J.-C., Petropulu A. P., Xueshi Y. Long-range dependence and heavy-tail modeling for teletraffic data. IEEE Signal Process. Mag., 2002, vol. 19, no. 3, pp. 14-27.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3