Memristive biosensors: classification and energy-information model

Author:

Zaripova Viktoriya Madiyarovna1,Lezhnina Yuliya Arkad'evna1ORCID,Petrova Irina Yurievna2,Gimatdinov Damir Maratovich1

Affiliation:

1. MIREA – Russian Technological University

2. ASTU

Abstract

The potential of memristive biosensors as an effective and dynamic link between engineering and biology, providing direct and functional communication for extracting information about biological processes in the human body, is discussed. Memristors can be part of a processing chain and, in the future, combine signal conversion with subsequent processing, acting as intelligent sensors. An energy-informational memristor model describing this nonlinear physical and technical effect and a parametric block diagram for describing such nonlinearity are proposed. To obtain a model of the nonlinear physico-technical effect of a memristor within the framework of the energy-informational model of circuits, a special functional dependence in the “charge-pulse” plane was revealed. It is noted that the memristive effect is observed not only in electrical circuits, but is also described for mechanical, thermal, diffusion, and optical circuits, which are well represented in terms of an energy-informational circuit model. The presented model of the memristive effect will expand the knowledge base of the computer-aided design system by including passports of memristive physical and technical effects. A classification of biosensors based on memristive effects is proposed, which will make it possible to supplement the knowledge bases of the computer-aided design system with passports of memristive physical and technical effects in accordance with this classification and parametric structural schemes of memristive physical and technical effects. The systematization of knowledge based on the identification of the characteristics and features of biosensors, as well as the classification of various types of memristors, will automate the process of choosing the most appropriate type of memristor, taking into account the required characteristics and features of the biosensor, which will lead to an increase in the efficiency of synthesis of new designs of memristive biosensors.

Publisher

Astrakhan State Technical University

Reference26 articles.

1. Biosensors Market Outlook (2023 to 2033). URL: https://www.futuremarketinsights.com/reports/biosensors-market (дата обращения: 04.10.2023)., Biosensors Market Outlook (2023 to 2033). Available at: https://www.futuremarketinsights.com/reports/biosensors-market (accessed: 04.10.2023).

2. Tzouvadaki I., Prodromakis T. Large-scale nanobi-osensing technologies // Front. Nanotechnol. 2023. V. 5. P. 1127363. DOI: 10.3389/fnano.2023.1127363., Tzouvadaki I., Prodromakis T. Large-scale nanobi-osensing technologies. Front. Nanotechnol., 2023, vol. 5, p. 1127363. DOI: 10.3389/fnano.2023.1127363.

3. WIPO. PATENTSCOPE Простой поиск. URL: http://patentscope.wipo.int/ (дата обращения: 04.10.2023)., WIPO. PATENTSCOPE Prostoi poisk. Available at: http://patentscope.wipo.int/ (accessed: 04.10.2023).

4. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found // Nature. 2008. V. 453 (7191). P. 80–83., Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found. Nature, 2008, vol. 453 (7191), pp. 80-83.

5. Петрова И. Ю., Зарипова В. М., Лежнина Ю. А., Сокольский В. М., Митченко И. А. Энергоинформационные модели биосенсоров // Вестн. Астрахан. гос. техн. ун-та. Сер.: Управление, вычислительная техника и информатика. 2015. № 3. С. 35–48., Petrova I. Iu., Zaripova V. M., Lezhnina Iu. A., Sokol'skii V. M., Mitchenko I. A. Energoinformatsionnye modeli biosensorov [Energy-informational models of bio-sensors]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Upravlenie, vychislit-el'naia tekhnika i informatika, 2015, no. 3, pp. 35-48.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3