3D CNN hand pose estimation with end-to-end hierarchical model and physical constraints from depth images

Author:

Xu Zhengze,Zhang Wenjun

Abstract

Previous studies are mainly focused on the works that depth image is treated as flat image, and then depth data tends to be mapped as gray values during the convolution processing and features extraction. To address this issue, an approach of 3D CNN hand pose estimation with end-to-end hierarchical model and physical constraints is proposed. After reconstruction of 3D space structure of hand from depth image, 3D model is converted into voxel grid for further hand pose estimation by 3D CNN. The 3D CNN method makes improvements by embedding end-to-end hierarchical model and constraints algorithm into the networks, resulting to train at fast convergence rate and avoid unrealistic hand pose. According to the experimental results, it reaches 87.98% of mean accuracy and 8.82 mm of mean absolute error (MAE) for all 21 joints within 24 ms at the inference time, which consistently outperforms several well-known gesture recognition algorithms.

Publisher

Czech Technical University in Prague - Central Library

Subject

Artificial Intelligence,Hardware and Architecture,General Neuroscience,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3