A model based on SVM-GDPSO for the voltage stability forecasting of large power system

Author:

Li Qiang,Qiang Yan,Kong De-jin,Liu Xiao-feng

Abstract

The stability assessment of a large power system in real-time is very necessary after it encounters fault. The paper proposes a new model (SVM-GDPSO) for assessing the large power system. In order to enhance SVM, taking tangent vector of power flow Jacobian (PFJ) as the goal of machine learning was used for improving the precision. Besides, particle swarm optimization (PSO) with Gaussian disturbance (GD) is taken for setting the key parameters of SVM, and metalearning was utilized to decrease the search space of PSO. The experiment on the standard test system of IEEE 118-bus demonstrated that this model could reflect the status of large power system in time. Besides, the method could locate the fault area and rank the fault level by the observation of critical bus. The proposed method has the reliability rate 97.22 %, which is superior to the back propagation neural network (BPNN) and SVM-GA, as well as determines the fault area with the success rate of 96.61 %.

Publisher

Czech Technical University in Prague - Central Library

Subject

Artificial Intelligence,Hardware and Architecture,General Neuroscience,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3