Towards the development of obstacle detection in railway tracks using thermal imaging

Author:

Vivek Veeman,Hemalatha Jeyaprakash,Latchoumi Thamarai Pugazhendhi,Mohan Sekar

Abstract

To prevent collisions between trains and objects on the railway line, rugged trains require an intelligent rail protection system. To improve railway safety and reduce the number of accidents, studies are underway. Machine learning (ML) had progressed rapidly, creating new perspectives on the subject. A technique called speed up robust features (SURF) is proposed by researchers to collect regionally and globally relevant information. In addition, taking advantage of the Ohio State University (OSU) heat walker benchmarking dataset, the effectiveness of this technique was examined under various lighting scenarios. This technology could help in reducing train accident rates and financial costs. The findings of the proposed methodology are very specific, in addition to the ability to quickly identify items (obstacles) on the railway line, both of which contribute to rail security. The proposed faster region based convolutional neural network (FR-CNN) with 2D singular spectrum analysis (SSA) improves the performance analysis of an accuracy of 90.2%, recall 95.6% and precision 94.6% when compared with an existing system YOLOv2 and YOLOv5 with 2D SSA.

Publisher

Czech Technical University in Prague - Central Library

Subject

Artificial Intelligence,Hardware and Architecture,General Neuroscience,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Railway Intrusion Detection Based on Machine Vision: A Survey, Challenges, and Perspectives;IEEE Transactions on Intelligent Transportation Systems;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3