Author:
Darmanto Prihadi Setyo,Astina I Made,Wardhana Alfian Kusuma,Amalia Alfi,Syahlan Arief
Abstract
Material flow in each main equipment of a cement clinker plant, which is very useful for controlling the process, is impossible to be measured during operation due to very high temperatures. This paper intends to overcome the difficulties associated with the measurement of these material flow values. This study presents a new method of calculating material flow (gas and solid) in each main equipment of a single string conventional suspension preheater type of a cement clinker plant. Using the proposed method, mass flow rate at a clinker cooler, kiln, suspension preheater (SP) and even each cyclone separator can be calculated with a heat conservation error less than 1 %. With the application of the least square method for solving the overdetermined system of mass and heat conservation equations obtained in the cyclones of SP, the flow of gas and solid materials entering and exiting each cyclone that cannot be measured directly in the operating plant can be approached. Based on the operation temperature data of gas and solid flows monitored in the control room of an Indonesian cement plant as a case study, the mass flow rate of gas and solid entering and exiting as well as separation efficiency of each cyclone can be calculated. The results show that the separation efficiencies of cyclones 1, 2, 3 and 4 are 95 %, 91.89 %, 84.09% and 79.51% respectively. Finally, this study will be very useful by providing data that are impossible to gather by a direct measurement in an operating plant, due to a very high process temperature constraint, for operational control needs, new equipment design, process simulation using computational fluid dynamics (CFD) software and even modification of existing equipment. The proposed method can be applied to all types of modern cement clinker plant configurations, either with or without a calciner including the double strings.
Publisher
Czech Technical University in Prague - Central Library