Assessment of the effectiveness of lubrication of Ti-6Al-4V titanium alloy sheets using radial basis function neural networks

Author:

Trzepieciński Tomasz,Szpunar Marcin

Abstract

The aim of the research presented in this article was to determine the value of the friction coefficient using a simple tribological test and to build an empirical model of friction with the use of radial basis function artifi-cial neural networks. The friction tests were carried out on a specially designed friction simulator that allows a sheet metal strip to be drawn between two fixed dies. The test materials were sheets of Ti-6Al-4V titanium alloy with a thickness of 0.5 mm. The friction tests were carried out with variable contact forces of counter-samples with rounded surfaces and in various lubrication conditions. Mineral oils and bio-degradable oils with the addition of boric acid (5 wt %) were tested. Based on the results of friction investigations, neural models of friction were built using RBF artificial neural networks. The good properties of the RBF network 2:2-35-1:1 were confirmed by a high value of the determination coefficient R2 = 0.9984 and a low value of the S.D. ratio equal to 0.0557. It was found that the COF value was the highest for the average values of both the nominal pressure and kinematic viscosity. Over the entire range of nominal pressures applied, SAE10W-40 engine oil ensured the most effective reduction of the COF. The COF value was the highest for the average values of both the nominal pressure and kinematic viscosity.

Publisher

Czech Technical University in Prague - Central Library

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3