Effect of cracks on the service life of RC structures exposed to chlorides

Author:

Russo Nicoletta,Gastaldi Matteo,Schiavi Luca,Strini Alberto,Zanoni Riccardo,Lollini Federica

Abstract

To move towards a more sustainable concrete, the enhancement of its durability is strongly encouraged and, dealing in particular with reinforced concrete (RC), this mainly means to prevent the damage due to environmental actions, e.g. due to chloride-induced corrosion. Therefore, there is the need of models aimed at designing durable structures. Usually the service life design models consider concrete in uncracked condition. In real structures, however, several phenomena can generate cracks on concrete surface, leading to an acceleration of the corrosion of steel rebar. A number of studies have been recently carried out in order to evaluate the influence of cracks on reinforced concrete durability in chloride-contaminated environment, however the knowledge of the effect of cracks on the initiation and propagation periods is still lacking. Furthermore, few studies have considered additional protection strategies, such as the use of stainless steel rebar. In this work, experimental results are presented concerning the influence of cracks on the service life of reinforced concrete structures in order to evaluate if cracks lead to an earlier corrosion initiation induced by chlorides. Prismatic specimens, reinforced with carbon steel and 304L stainless steel bars, were longitudinally cracked and exposed to ponding with 3.5% NaCl solution. The monitoring of corrosion behaviour showed that when cracks reached the steel surface corrosion initiated immediately.

Publisher

Czech Technical University in Prague - Central Library

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3