DEVELOPMENT OF NUMERICAL MODELS FOR THE PREDICTION OF TEMPERATURE AND SURFACE ROUGHNESS DURING THE MACHINING OPERATION OF TITANIUM ALLOY (Ti6Al14V)

Author:

Daniyan IlesanmiORCID,Tlhabadira Isaac,Mpofu Khumbulani,Adeodu Adefemi

Abstract

Temperature and surface roughness are important factors, which determine the degree of machinability and the performance of both the cutting tool and the work piece material. In this study, numerical models obtained from the Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques were used for predicting the magnitude of the temperature and surface roughness during the machining operation of titanium alloy (Ti6Al4V). The design of the numerical experiment was carried out using the Response Surface Methodology (RSM) for the combination of the process parameters while the Artificial Neural Network (ANN) with 3 input layers, 10 sigmoid hidden neurons and 3 linear output neurons were employed for the prediction of the values of temperature. The ANN was iteratively trained using the Levenberg-Marquardt backpropagation algorithm. The physical experiments were carried out using a DMU80monoBLOCK Deckel Maho 5-axis CNC milling machine with a maximum spindle speed of 18 000 rpm. A carbide-cutting insert (RCKT1204MO-PM S40T) was used for the machining operation. A professional infrared video thermometer with an LCD display and camera function (MT 696) with infrared temperature range of −50−1000 °C, was employed for the temperature measurement while the surface roughness of the work pieces were measured using the Mitutoyo SJ – 201, surface roughness machine. The results obtained indicate that there is high degree of agreement between the values of temperature and surface roughness measured from the physical experiments and the predicted values obtained using the ANN and RSM. This signifies that the developed RSM and ANN models are highly suitable for predictive purposes. This work can find application in the production and manufacturing industries especially for the control, optimization and process monitoring of process parameters.

Publisher

Czech Technical University in Prague - Central Library

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Esthetics in Direct Dental Resin Composite: Investigating Surface Roughness and Color Stability;Journal of Functional Biomaterials;2024-07-25

2. Drilling of Titanium Alloy (Ti6Al4V) using Response Surface Methodology: An Experimental Approach;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Applications of artificial neural networks in machining processes: a comprehensive review;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-02-28

4. Comparative analysis of the cutting performances of SiAlON ceramic, cubic boron nitride and carbide cutting tools for titanium machining;The International Journal of Advanced Manufacturing Technology;2023-08-22

5. Experimental Investigation of the Cutting Performance of SiAlON Ceramic Cutting Tool in Titanium Machining;2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT);2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3