AUTOMATIC EEG CLASSIFICATION USING DENSITY BASED ALGORITHMS DBSCAN AND DENCLUE

Author:

Piorecký Marek,Štrobl Jan,Krajča Vladimír

Abstract

Electroencephalograph (EEG) is a commonly used method in neurological practice. Automatic classifiers (algorithms) highlight signal sections with interesting activity and assist an expert with record scoring. Algorithm K-means is one of the most commonly used methods for EEG inspection. In this paper, we propose/apply a method based on density-oriented algorithms DBSCAN and DENCLUE. DBSCAN and DENCLUE separate the nested clusters against K-means. All three algorithms were validated on a testing dataset and after that adapted for a real EEG records classification. 24 dimensions EEG feature space were classified into 5 classes (physiological, epileptic, EOG, electrode, and EMG artefact). Modified DBSCAN and DENCLUE create more than two homogeneous classes of the epileptic EEG data. The results offer an opportunity for the EEG scoring in clinical practice. The big advantage of the proposed algorithms is the high homogeneity of the epileptic class.

Publisher

Czech Technical University in Prague - Central Library

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CNN classification of variance-based selected topo-maps of EEG;Proceedings of the 9th International Conference on Bioinformatics Research and Applications;2022-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3