Author:
Hrivnak Jiri,Motlochova Lenka
Abstract
<p>The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of <em>A<sub>1</sub></em> and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of <em>A<sub>2</sub></em> and a specific version of two variable Jacobi polynomials. The connection with recently studied <em>G<sub>2</sub></em>-polynomials is established. Formulas for connection between the four types of orbit functions of <em>B<sub>n</sub></em> or <em>C<sub>n</sub></em> and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.</p>
Publisher
Czech Technical University in Prague - Central Library
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献