CFD simulation of partial channel blockage on plate-type fuel of TRIGA-2000 conversion reactor core

Author:

Dibyo Sukmanto,Luthfi Wahid,Pinem Surian,Irianto Ign Djoko,Sriwardhani Veronica Indriati

Abstract

A nuclear reactor cooling system that has been operating for a long time can carry some debris into a fuel coolant channel, which can result in a blockage. An in-depth two-dimensional simulation of partial channel blockage can be carried out using FLUENT Code. In this study, a channel blockage simulation is employed to perform a safety analysis for the TRIGA-2000 reactor, which is converted using plate-type fuel. Heat generation on the fuel plate takes place along its axial axis. The modelling of the fuel-plate is in the form of a rectangular sub-channel with an inlet coolant temperature of 308 K with a low coolant velocity of 0.69 m/s. It is assumed that blockage is in a form of a thin plate, with the blockage area being assumed to be 60 %, 70 %, and 80 % at the sub-channel inlet flow. An unblocking condition is also compared with a steady-state calculation that has been done by COOLOD-N2 Code. The results show that a partial blockage has a significant impact on the coolant velocity. When the blockage of 80 % occurs, a maximum coolant temperature locally reaches 413 K. While the saturation temperature is 386 K. From the point of view of the safety aspect, the blockage simulation result for the TRIGA-2000 thermal-hydraulic core design using plate-type fuel shows that a nucleate boiling occurs, which from the safety aspect, could cause damage to the fuel plate.

Publisher

Czech Technical University in Prague - Central Library

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3