Theoretical and experimental study of water vapour condensation with high content of non-condensable gas in a vertical tube

Author:

Krempaský Jakub,Havlík Jan,Dlouhý Tomáš

Abstract

This article deals with the possibility of separating water vapour from flue gases after oxyfuel combustion using condensation processes. Those processes can generally be described as condensation of water vapour in the presence of non-condensable gases. Hence, the effect of noncondensable gas (NCG) on the condensation process has been theoretically and experimentally analysed in this study. The theoretical model was developed on the basis of the heat and mass transfer analogy with respect to the effect of the NCG, the flow mode of the condensate film, the shear stress of the flowing mixture, subcooling and superheating. Subsequently, an experimental analysis was carried out on a 1.5m long vertical pipe with an inner diameter of 23.7mm. The mixture of vapour and air flowed inside the inner tube with an air mass fraction ranging from 23% to 62%. The overall heat transfer coefficients (HTC) from the theoretical model and experimental measurement are significantly lower than the HTC obtained according to the Nusselt theory for the condensation of pure water vapour. The overall HTC decreases along the tube length as the gas concentration increases, which corresponds to a decrease in the local condensation rate. The highest values of the HTC are observed in the condenser inlet, although a strong decrease in HTC is also observed here. Meanwhile, there is a possibility for an HTC enhancement through turbulence increase of the condensing mixture in the condenser outlet. Results also showed that the heat resistance of the mixture is several times higher than the heat resistance of the condensate film. The developed theoretical model based on heat and mass transfer analogy is in good agreement with experimental results with the standard deviation within +25% and −5%. The model is more accurate for lower NCG concentrations.

Publisher

Czech Technical University in Prague - Central Library

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3