A comparative study of ferrofluid lubrication on double-layer porous squeeze curved annular plates with slip velocity

Author:

Patel Niru C.,Patel Jimit R.,Deheri Gunamani M.

Abstract

This article makes an effort to present a comparative study on the performance of a Shliomis model-based ferrofluid (FF) lubrication of a porous squeeze film in curved annular plates taking slip velocity into account. The modified Darcy’s law has been adopted to find the impact of the doublelayered porosity, while the slip velocity effect has been calculated according to Beavers and Joseph’s slip conditions. The modified Reynolds equation for the double-layered bearing system is solved to compute a dimensionless pressure profile and load-bearing capacity (LBC). The graphical results of the study reveal that the LBC increases in the case of magnetization, volume concentration and upper plate’s curvature parameter while it decreases with other parameters for both the film thickness profile. A comparative study suggests that the exponential film thickness profile is more suitable to enhance LBC for the annular plates lubricated by ferrofluid, including the presence of a slip. The study shows that the slip model performed quite well and there is a potential for improving the performance efficiency. Besides, multiple methods have been presented to enhance the performance of the above mentioned bearing system by selecting various combinations of parameters governing the system.

Publisher

Czech Technical University in Prague - Central Library

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3