Two-wave Laser Method for Monitoring the Species Composition of Forest

Author:

Gorodnichev V. A.1,Belov M. L.1,Shvygina V. V.1,Sitnikov D. S.1

Affiliation:

1. Bauman Moscow State Technical University, Moscow

Abstract

Today the monitoring of forests is one of the actual tasks of environmental control. The most important problems of monitoring of forest resources are mapping of forests, determining species and age composition of forests and analysis of sanitary condition of forests.An effective method of monitoring the state of vegetation (including forests) is optical aerospace sensing. The methods of optical sensing of vegetation cover are currently passive, for the most part.However, passive methods are available to use for daylight only. Therefore, laser methods which can be used in wide range of light and atmospheric conditions are of interest.In this article there was carried out the comparative analysis and selection of the most effective sensing wavelengths in atmospheric transparency windows for two-waves laser method for determining forest areas with prevalence of coniferous or deciduous wood species.As an information index (coniferous or deciduous wood species) in this article the ratio of reflection coefficients of parcels of forest at two wavelengths was used. Pairs of wavelengths 1,54μ and 0,532μ; 1,54μ and 0,355μ are the most relevant for detecting forest areas with prevalence of coniferous or deciduous wood species.For quantitative assessment the efficiency of the laser method mathematical modeling was carried out. The results of mathematical modeling show that that the wavelengths of 0.532μm and 1.54μm are the most effective and provide scanning with probability of correct detecting ~ 0.99 and with false-alarm probability ~ 0.04.However, in terms of eye safety it’s better to choose wavelengths of 0.355μm and 1.54μm, because they allow to solve satisfactory the problem of determining forest areas with prevalence of coniferous or deciduous wood species with probability of correct detecting ~ 0.9 and with false-alarm probability ~ 0.14.

Publisher

JSC Radio Engineering Corporation - Vega

Subject

Polymers and Plastics,General Environmental Science

Reference16 articles.

1. Giperspektralnye snimki: obzor sensorov dlia BPLA, sistem obrabotki dannykh i prilozhenij dlia sel’skogo i lesnogo khoziajstva [Hyperspectral images: review of sensor for pilotless aerial vehicle, data processing systems and software applications for agriculture and forestry]. Available at: http://geomatica.ru/clauses/giperspektralnye-snimki-obzor-sensorov-dlya-bpla-sistem-obrabotka-dannyh-i-prilozhenij-dlya-selskogo-i-lesnogo-hozyajstva, accessed 02.03.2020 (in Russian).

2. Monitoring lesov s pomoshch’yu gruppirovki sputnikov RapidEye [Forest monitoring by using package of the satellites RapidEye]. Available at: http://geomatica.ru/clauses/303/, accessed 02.03.2020 (in Russian).

3. Tekhnologii distantsionnoj otsenki lesnykh resursov Rossii: sovremennye vozmozhnosti i potentsial primeneniia [Remote estimate technology of Russia forest resource: advanced capability and potential]. Available at: https://docplayer.ru/58588071-Tehnologii-distancionnoy-ocenki-lesnyh-resursov-rossii-sovremennye-vozmozhnosti-i-potencial-primeneniya.html, accessed 02.03.2020 (in Russian).

4. White J.C., Coops N.C., Wulder M.A., Vastaranta M., Hilker T., Tompalski P. Remote sensing technologies for enhancing forest inventories: a review. Canadian J. of Remote Sensing, 2016, vol. 42, no. 5, pp. 619–641. DOI: 10.1080/07038992.2016.1207484

5. Puliti S., Ørka H.O., Gobakken T., Næsset E. Inventory of small forest areas using an unmanned aerial system. Remote Sensing, 2015, vol. 7, no. 8, pp. 9632–9654. DOI: 10.3390/rs70809632

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3