Author:
Savosko V,Komarova I,Lykholat Yu,Yevtushenko E,Lykholat T
Abstract
The importance of our research is due to the need to introduce into modern biological education methods of predictive modeling which are based on relevant factual material. Such an actual material may be the entry of natural and anthropic heavy metals into the soil at industrial areas. The object of this work: (i) to work out a predictive model of the total heavy metals inputs to soil at the Kryvyi Rih ore-mining & metallurgical District and (ii) to identify ways to use this model in biological education. Our study areas are located in the Kryvyi Rih District (Dnipropetrovsk region, Central Ukraine). In this work, classical scientific methods (such as analysis and synthesis, induction and deduction, analogy and formalization, abstraction and concretization, classification and modelling) were used. By summary the own research results and available scientific publications, the heavy metals total inputs to soils at Kryvyi Rih District was predicted. It is suggested that the current heavy metals content in soils of this region due to 1) natural and 2) anthropogenic flows, which are segmented into global and local levels. Predictive calculations show that heavy metals inputs to the soil of this region have the following values (mg ⋅ m2/year): Fe – 800-80 000, Mn – 125-520, Zn – 75-360, Ni – 20-30, Cu – 15-50, Pb – 7.5-120, Cd – 0.30-0.70. It is established that anthropogenic flows predominate in Fe and Pb inputs (60-99 %), natural flows predominate in Ni and Cd inputs (55-95 %). While, for Mn, Zn, and Cu inputs the alternate dominance of natural and anthropogenic flows are characterized. It is shown that the predictive model development for heavy metals inputs to soils of the industrial region can be used for efficient biological education (for example in bachelors of biologists training, discipline "Computer modelling in biology").