1. Bondarenko, O.V., Nechypurenko, P.P., Hamaniuk, V.A., Semerikov, S.O.: Educational Dimension: a new journal for research on education, learning and training. Educational Dimension 1, 1–4 (Dec 2019), doi:10.31812/ed.620
2. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large Language Models in Machine Translation. In: Eisner, J. (ed.) EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, pp. 858–867, ACL (2007), URL https://aclanthology.org/D07-1090/
3. Luitse, D., Denkena, W.: The great Transformer: Examining the role of large language models in the political economy of AI. Big Data & Society 8(2), 20539517211047734 (2021), doi:10.1177/20539517211047734
4. Reynolds, L., McDonell, K.: Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21, Association for Computing Machinery, New York, NY, USA (2021), ISBN 9781450380959, doi:10.1145/3411763.3451760
5. Rytting, C.M., Wingate, D.: Leveraging the Inductive Bias of Large Language Models for Abstract Textual Reasoning. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 17111–17122 (2021), URL https://proceedings.neurips.cc/paper/2021/hash/8e08227323cd829e449559bb381484b7-Abstract.html