Padé approximation for time delay systems and a new design method for the fractional-order PI controller

Author:

ASTEKİN Dorukhan1

Affiliation:

1. ADNAN MENDERES ÜNİVERSİTESİ

Abstract

Fractional-order PI controllers have been the research topic of many articles thanks to the convenience they bring day by day. This type of controller offers much more useful results compared to integer-order PI. But it makes mathematical operations more complicated. In this study, a simple fractional-order PI controller design method based on the centroid of the convex stability region, which was developed using the stability boundary locus method, is proposed. For this, first, the stability region, which provides all stable controllers, is obtained in the parameter plane of the fractional-order PI controller. Then, by determining the corner and cusp points of this stability region, the convex stability region is obtained. Finally, the centroid of the obtained convex stability region is found, and the controller parameters are calculated. The method used provides significant advantages in terms of calculating the controller parameters without using complex graphical methods, ensuring the stability of the closed-loop system and reducing the computational load considerably. In addition, for the equations used in obtaining the stability region in this study, unlike the studies in the literature, Padé approximations are preferred instead of the time delay term. Especially, it is seen that the results obtained using the second-order Padé approximation almost exactly match the original system. Some numerical examples are given to demonstrate the effectiveness and simplicity of the proposed method.

Publisher

Journal of the Faculty of Engineering and Architecture of Gazi University

Subject

General Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3