Mobil haritalama amaçlı Mobilenet tabanlı trafik işaretleri tespit sistemi: kitlesel coğrafi bilgi toplama sistemi

Author:

Özcan Tatar Ceren1ORCID,Yılmaz Emrah2ORCID,Efe Abdullah2ORCID,Sönmez Berk2ORCID,Özdemir Yalçın2ORCID,Danışan Burak2ORCID,Beyaz Hale İrem2ORCID,Yegnidemir Engin3ORCID

Affiliation:

1. ESKİŞEHİR TEKNİK ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, UZAKTAN ALGILAMA VE COĞRAFİ BİLGİ SİSTEMLERİ ANABİLİM DALI (DİSİPLİNLERARASI)

2. Başarsoft Bilgi Teknolojileri A.Ş.

3. GEBZE TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ, BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

Abstract

Mobil haritalama sistemleri (Mobile Mapping Systems- MMS) coğrafi veri toplama yetenekleri ile birlikte, gelişmiş sürücü destek sistemleri (Advanced Driver Assistance Systems- ADAS) ve akıllı ulaşım sistemleri (Intelligent Transportation Systems - ITS) gibi birçok uygulama alanın sayısal harita ihtiyacını karşılayabilmektedir. Üretilen haritalarda özellikle trafik işaretlerinin konum ve sınıf bilgilerinin bulunması, bahsi geçen uygulama alanları için önem arz etmektedir. Ancak, MMS tarafından toplanan verilerin geniş ölçekli ve karmaşık olması, trafik işaretlerinin konum-sınıf çıkarımlarını zorlaştırmaktadır. Bu nedenle araştırmacılar, trafik işareti verilerinin işlenmesi için yapay zekâ tabanlı yöntemler geliştirmiştir. Bu çalışmada, trafik işaretlerinin konum ve sınıf bilgilerinin yapay zekâ ile çıkarımına yönelik tasarlanan Kitlesel Coğrafi Bilgi Toplama Sistemi (KCVTS) açıklanmıştır. KCVTS; MobileNet tabanıyla mobil cihazlarda etkinlik gösteren, cihazın gerçek-zamanlı kamera görüntülerinde bulunan trafik işaretlerini tespit eden ve sınıflandıran ve böylece, işaretlerin konum-sınıf bilgilerini veri tabanına aktaran hafif-yapılı bir sistemdir. Çalışmada KCVTS’nin manuel işlem gerektiren geleneksel yöntemlerden, trafik işaretlerinin şekil ve renk gibi özelliklerinin çıkarımına dayanan yarı-geleneksel yöntemlerden ve saha verilerinin merkezdeki güçlü bilgisayarlarda, bilgisayarlı görü ve makine öğrenmesi teknikleri ile işlendiği YZ tabanlı yöntemlerden birçok noktada daha pratik ve verimli olduğu gösterilmiştir.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Journal of the Faculty of Engineering and Architecture of Gazi University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3