Investigation of fracture behaviour of one-dimensional functionally graded plates by using peridynamic theory

Author:

OLMUŞ İbrahim1,DÖRDÜNCÜ Mehmet2,KAYA Kadir2

Affiliation:

1. ERCİYES ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ

2. ERCİYES ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

Composite materials are widely used in aerospace, military, and nuclear engineering fields due to their desirable properties such as lightness and high strength. The mismatch of the stiffness at the interfaces between distinct materials results in a stress concentration; thus, crack nucleation and inter-layer separations can be observed. The concept of functionally graded materials (FGMs) aims to achieve a structure whose material properties continuously vary in one or more coordinate directions. This continuous variation is obtained for the material properties of the FG structure.This situation provides a way to minimize the stress concentrations which may occur at the interfaces between the two different materials. FGMs are one of the most important structures in defense and aerospace industries owing to their superior properties. In order to design FG structures safely, it is very crucial to understand and investigate possible damages under different loads to increase the reliability of these structures. Since structural testing and analysis techniques may be costly, there is a necessity to use improved and accurate computational tools to predict the deformation and stress fields of the FG structures. Numerical modeling of the fracture and damage in FGMs remains a formidable challenge in computational mechanics due to the non-symmetric material variations in the FGMs. In PeriDynamic (PD) theory, the equations of classical continuum mechanics (CCM) are reformulated by replacing the derivatives with volumetric integral expressions. Hence, the equilibrium equations of PD theory are still valid even if the material includes a discontinuity, unlike CCM. In this study, the influence of the material variations in the FG plates on the crack nucleation and propagation is investigated by means of PD theory. As a result of the analysis, it is observed that the material distributions have an evident effect on the fracture behaviour of the plate, and the plate strength can be increased by tailoring the material properties in the FG plates.

Publisher

Journal of the Faculty of Engineering and Architecture of Gazi University

Subject

General Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3