Mask R-CNN kullanılarak yeni bir MRG veri tabanında prostat bölgelerinin segmentasyonu: PACS sistemi üzerinde bir uygulama

Author:

Gürkan Çağlar1ORCID,Budak AbdulkadirORCID,Karataş HakanORCID,Akın Kayıhan2ORCID

Affiliation:

1. ESKISEHIR TECHNICAL UNIVERSİTY

2. LOKMAN HEKIM UNIVERSITY

Abstract

Akciğer kanserinden sonra erkeklerde en yaygın rastlanan kanser türü prostat kanseridir. Günümüzde, ileri prostat görüntüleme radyologlar tarafından yapılan multiparametrik prostat manyetik rezonans görüntüleme (MRG) ile gerçekleştirilmektedir. Prostatın birçok patolojisi görüntülenebilse de, asıl amaç prostat kanseri olasılığını belirlemek ve biyopsi işlemine gerek olup olmadığına karar vermektir. Bu sürece, T2 ağırlıklı görüntüler (T2W), difüzyon ağırlıklı görüntüler (DWI) ve dinamik kontrastlı görüntüler (DCE) olmak üzere farklı seriler halindeki MRG görüntülerinin analizi dahil edilmektedir. Bununla birlikte, öncelikle prostat bölgelerinin ayrıştırılması gerekmektedir. Daha sonra ilgili prostat bölgelerinde lezyon taraması yapılmaktadır. Son olarak ise prostat lezyon skorlama işleminin PI-RADS v2’ye göre yapılmasına ihtiyaç duyulmaktadır. Bu nedenle prostat kanseri tanısının konulması karışık ve uzun bir süreçtir. Bu sebeble, prostat kanseri tanısının koyulması için karar destek sistemlerine ihtiyaç duyulmaktadır. Bu bağlamda, çalışmanın başlıca amacı prostat bölgelerinin otomatik olarak segmentasyonunu sağlamaktır. Segmentasyon görevinde 15 hastaya ait T2W MRG görüntüleri ile birlikte Mask R-CNN algoritması kullanılmıştır. Mask R-CNN algoritması ResNet-50 omurga modelinin kullanımı ile birlikte 96,040 mAP50 değeri ile segmentasyon performansı elde etmiştir. Son olarak, eğitilen model PACS sistemine entegre edilmiştir. Entegrasyon sayesinde hastanelerde kullanıma hazır bir yapay zeka destekli karar destek sistemi geliştirilmiştir. Böylelikle, sağlık çalışanları üzerindeki iş yükü azaltılırken zamandan da kazanç sağlanmıştır.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Journal of the Faculty of Engineering and Architecture of Gazi University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3