Karanlık ağ trafiğinin makine öğrenmesi yöntemleri kullanılarak tespiti ve sınıflandırılması

Author:

UĞURLU Mesut1ORCID,DOGRU İbrahim2ORCID,ARSLAN Recep Sinan3ORCID

Affiliation:

1. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Bilgi Güvenliği Mühendisliği

2. GAZİ ÜNİVERSİTESİ

3. Kayseri University

Abstract

Dijitalleşme ile suç dünyası da dijital bir hale gelmiştir ve internet üzerinden işlenen suçların sayısı her geçen gün artmaktadır. Siber suçlular ve saldırganlar kimliklerini gizlemek ve şifreli iletişim sağlamak için Karanlık Ağ adı verilen ve internet üzerinde bulunan gizli ağları kullanmaktadırlar. Karanlık Ağlar normal internet altyapısından farklı ve özel erişim yöntemlerine sahiptirler. Bu ağlara yapılan tüm erişimler şüphelidir ve incelenmesi gerekmektedir. Karanlık Ağ, şifreli iletişim sağladığı için günümüz güvenlik araçları ile tespit edilmesi ve sınıflandırılması zordur. Bu çalışmada şifreli ağ trafiği deşifreleme işlemi yapılmadan sadece paketlerin istatistiki bilgileri makine öğrenmesi yaklaşımı kullanılarak analiz edilmiştir. Veri seti olarak açık kaynak olan CICDarknet2020 veri seti kullanılmıştır. Paket analizi için K En Yakın Komşu, Lojistik Regresyon, Rassal Orman, SVM, Karar Ağacı, Gaussian Naive Bayes, Doğrusal Ayrımcı Analiz, Gradyan Artırma, Ekstra Ağaç ve XGBoost algoritmalarını kapsayan detaylı bir deneysel çalışma gerçekleştirilmiştir. Yapılan deneysel çalışmalarda Karar Ağacı algoritmasının %93,32 doğruluk oranı ile en yüksek sınıflandırma başarısına sahip olduğu görülmüştür.

Publisher

Journal of the Faculty of Engineering and Architecture of Gazi University

Subject

General Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3