In Vivo Three-Dimensional Analysis of Hindfoot Kinematics

Author:

Imai Kan1,Tokunaga Daisaku12,Takatori Ryota1,Ikoma Kazuya1,Maki Masahiro1,Ohkawa Hiroki1,Ogura Akiko1,Tsuji Yoshiro1,Inoue Nozomu34,Kubo Toshikazu1

Affiliation:

1. Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine

2. Department of Biomaterials and Biomechanics, Kyoto Prefectural University of Medicine

3. Department of Orthopedic Surgery, Rush University Medical Center

4. Faculty of Life and Medical Science, Doshisha University

Abstract

Background: Knowledge of normal bone motion of the foot is important for understanding the gait as well as for various pathologies; however, the pattern of 3D motion is not completely understood. The aim of this study was to quantify the in vivo motion of the tibiotalar joint, talocalcaneal joint, and talonavicular joint in normal adult feet using a noninvasive (e.g., nonsurgical) measurement technique. Materials and Methods: CT images were taken of both feet of ten normal young adults (six males, four females) in neutral, plantarflexion, and dorsiflexion positions of the ankle joint, from which 3D virtual models were made of each mid-hind foot bones. The 3D bone motion of these models was calculated using volume merge methods in three major planes. These data were used to analyze the relationship between the motion of the ankle joint and each other joint. Results: Tibiotalar rotation was observed in dorsiflexion, abduction, and eversion during maximal dorsiflexion of the ankle joint. Talocalcaneal and talonavicular rotation was very small because the ankle joint motion was limited to the sagittal plane. Tibiotalar rotation was also observed in plantarflexion and adduction during maximal plantarflexion of the ankle joint, and talocalcaneal rotation was very small. Talonavicular rotation was observed in plantarflexion and inversion. The motion of the x-axis and the z-axis of tibiotalar joint, and the x-axis and the y-axis of the talonavicular and talocalcaneal joint were associated with the ankle motion. Conclusion: Bone motion could be easily and accurately calculated using volume merge methods more effectively than it could with other methods. Clinical Relevance: The data elucidates the baseline segmental motion for comparison with symptomatic subjects which could help us to better understand pathokinematics of various foot and ankle pathologies.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3