Affiliation:
1. 11001 Valley Life Sciences Building #4156, University of California Berkeley, California 94720-2465, USA;, Email: jajauregui@berkeley.edu
2. 2Department of Plant Sciences MS 2, One Shields Avenue, University of California, Davis, California 95616, USA;, Email: dpotter@ucdavis.edu
Abstract
Abstract— Acaena (Rosaceae) is the most complex and ecologically variable genus in Sanguisorbinae. Although it has been the subject of several taxonomic treatments, the largest phylogenetic analysis to date only sampled a small fraction of the total global diversity
(five to seven out of 45 to 50 species). This study included most of the species to elucidate the phylogenetic relationships of Acaena and biogeographic patterns in Sanguisorbinae. Phylogenetic analyses of non-coding nuclear (ITS region) and chloroplast (trnL-F) DNA sequence
markers using maximum likelihood and Bayesian analyses suggested that Acaena is a paraphyletic group with species of Margyricarpus and Tetraglochin nested within it. We identified strong support for eight subclades that are geographically or taxonomically structured. Nevertheless,
the species-level relationships within subclades are still uncertain, which may be due to rapid diversification and lack of informative characters in the markers used. Sanguisorbinae, a primarily Southern Hemisphere clade, exhibits a classic Gondwana disjunct distribution. This current distribution
is explained primarily by eight long-distance dispersal events. Our results suggested that Sanguisorbinae split into Cliffortia and Acaena around 13.6 mya. While Cliffortia diversified in southern South Africa, Acaena experienced several migration events in the
Southern Hemisphere. Our estimation of the ancestral range suggested that Acaena likely originated in South Africa, followed by migration and subsequent diversification into southern South America. From there, the genus migrated to New Zealand, throughout the Andes, and to tropical
areas in Central America, reaching as far north as California. Chile and New Zealand are the main sources of propagules for dispersal as well as the greatest diversity for the genus. The evolutionary relationships of species in Acaena combine a history of rapid diversifications, long-distance
dispersals, and genetic variation within some taxa. Further research should be undertaken to clarify the infraspecific classification of A. magellanica.
Publisher
American Society of Plant Taxonomists
Subject
Plant Science,Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献