Evolution of Chromosome Number in Wild Onions (Allium, Amaryllidaceae)

Author:

Babin Courtney H.,Bell Charles D.

Abstract

Abstract— Polyploidy has been shown to be a significant driver of diversification among land plants. In addition to whole-genome duplication, other common mechanisms of chromosome number evolution include increases by a multiple of 1.5 in chromosome number due to the fusion of gametes with different ploidy levels (demi-polyploidy), gains or losses of single chromosomes that alter the DNA content of an organism (aneuploidy), or chromosome fission or fusion (ascending dysploidy or descending dysploidy, respectively). Considering the high variability in chromosome number transitions across multiple clades within angiosperms and the ancient genome duplication events responsible for their diversity, more studies of large polyploid systems are necessary to close the gaps in understanding chromosomal evolution in polyploid plants. Allium L. (Amaryllidaceae) is an ideal candidate for polyploid research because it is a large clade that includes numerous natural populations of diploid and polyploid species. Species of Allium mainly occupy temperate climates in the Northern Hemisphere and include economically important ornamentals and cultivated crops such as leeks, garlic, chives, and onions. Here, we used a molecular phylogeny of Allium to examine chromosomal evolution with chromEvol v. 2.0 which uses likelihood-based methods for inferring the pattern of chromosome number change across a phylogeny. The best-fit model of chromosomal evolution indicated that chromosome transitions within Allium occurred through the constant gains and losses of single chromosomes as well as demi-polyploidization events, with the rate of chromosome gain events being approximately 2.5 to 4.5 times more likely to occur than demi-polyploidization and loss events, respectively.

Publisher

American Society of Plant Taxonomists

Subject

Plant Science,Genetics,Ecology, Evolution, Behavior and Systematics

Reference110 articles.

1. Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers;Abugalieva;BMC Plant Biology,2017

2. Data from: Evolution of Chromosome Number in Wild Onions (Allium, Amaryllidaceae);Babin;Dryad Digital Repository.,2021

3. The utility of the incongruence length difference test;Barker;Systematic Biology,2002

4. Variation in genomic form in plants and its ecological implications;Bennett;The New Phytologist,1987

5. Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data;Berry;American Journal of Botany,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3