Abstract
In this paper, we give a classification of Codazzi hypersurfaces in a Lie group $(Nil^{4},\widetilde g)$. We also give a characterization of a class of minimal hypersurfaces in $(Nil^{4},\widetilde g)$ with an example of a minimal surface in this class.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Subject
Applied Mathematics,Geometry and Topology,Mathematical Physics
Reference8 articles.
1. [1] Belkhelfa M., Dillen F., Inoguchi J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. Banach Center
Publishing, 57, 67-87 (2002).
2. [2] Calvaruso G., De Leo B.: Curvature properties of four-dimensional generalized symmetric spaces. J. Geom. 90, 30-46 (2008).
3. [3] Filipkiewicz R.: Four dimensional geometries. PhD thesis, University of Warwick, Great Britain (1983).
4. [4] Hasni A.: Les géométries de Thurston et la pseudo symétrie d’après R. Deszcz. PhD thesis, University of Tlemcen, Algeria (2014).
5. [5] Lawson H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187-197 (1969).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献